Additive and Multiplicative Properties Ofpoint Sets Based on Beta
نویسندگان
چکیده
| To each number > 1 correspond abelian groups in R d , of the form = P d i=1 Z e i , which obey. The set Z of beta-integers is a countable set of numbers : it is precisely the set of real numbers which are polynomial in when they are written in \basis ", and Z = Zwhen 2 N. We prove here a list of arithmetic properties of Z : addition, multiplication, relation with integers, when is a quadratic Pisot-Vijayaraghavan unit (quasicrystallographic innation factors are particular examples). We also consider the case of a cubic Pisot-Vijayaraghavan unit associated with the seven-fold cyclotomic ring. At the end, we show how the point sets are vertices of d-dimensional tilings. R esum e. | A chaque nombre > 1 correspondent des groupes ab eliens dans R d , de la forme = P d i=1 Z e i , et qui satisfont. L'ensemble Z des beta-entiers est un ensemble d enombrable de nombres, qui est form e de tous les r eels qui sont polynomiaux en lorsqu'on les ecrit en \base ", et qui se confond avec Zlorsque est un naturel > 1. Un ensemble de propri et es arithm etiques de Z , addition, multiplication, relation avec les entiers, sont ici pr esent ees lorsque est un nombre de Pisot-Vijayaraghavan quadratique unitaire quelconque. Nous rappelons que les facteurs d'innation en quasicristallographieen sont des cas particuliers. Nous traitons aussi le cas d'un nombre de Pisot cubique unitaire associ e a l'anneau cyclotomique a sym etrie d'ordre 7. Ennn, nous montrons comment les ensembles de points peuvent ^ etre vus comme les nnuds de pavages dans R d .
منابع مشابه
A generalization of Martindale's theorem to $(alpha, beta)-$homomorphism
Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.
متن کاملDiversity partitioning without statistical independence of alpha and beta.
Diversity partitioning has become a popular method for analyzing patterns of alpha and beta diversity. A recent evaluation of the method emphasized a distinction between additive and multiplicative partitioning and further advocated the use of multiplicative partitioning based on a presumed independence between alpha and beta. Concurrently, additive partitioning was criticized for producing dep...
متن کاملA Note on Compact Semirings
By a topological semiring we mean a Hausdorff space S together with two continuous associative operations on S such that one (called multiplication) distributes across the other (called addition). That is, we insist that x(y-{-z)=xy-\-xz and (x-\-y)z = xz-\-yz for all x, y, and z in 5. Note that, in contrast to the purely algebraic situation, we do not postulate the existence of an additive ide...
متن کاملOn transitive soft sets over semihypergroups
The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by $S_{H}$ and $T_{H},$ respectively. It is shown that $T_{H}=S_{H}$ if and only if $beta=beta^{*}.$ We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.
متن کاملOn the superstability of a special derivation
The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007